Cooperation of Decision Procedures for the Satisfiability Problem

نویسنده

  • Christophe Ringeissen
چکیده

Constraint programming is strongly based on the use of solvers which are able to check satissability of constraints. We show in this paper a rule-based algorithm for solving in a modular way the satissability problem w.r.t. a class of theories Th. The case where Th is the union of two disjoint theories Th 1 and Th 2 is known for a long time but we study here diierent cases where function symbols are shared by Th 1 and Th 2. The chosen approach leads to a highly non-deterministic decomposition algorithm but drastically simpliies the understanding of the combination problem. The obtained decomposition algorithm is illustrated by the combination of non-disjoint equational theories. Coop eration de proc edures de d ecision pour le probl eme de satisfaisabilit e R esum e : La programmation avec contraintes est bas ee sur l'utilisation de solveurs ca-pables de v eriier la satisfaisabilit e des contraintes. Nous pr esentons un algorithme a base de r egles pour r esoudre de faa con modulaire le probl eme de satisfaisabilit e par rapport a une classe de th eories Th. Le cas o u Th est une union de deux th eories disjointes Th 1 et Th 2 est connue depuis longtemps mais nous etudions ici des cas o u les symboles de fonctions sont partag es par Th 1 et Th 2. L'approche choisie conduit a un algorithme de d ecomposition fortement non-d eterministe qui simpliie pourtant la compr ehension du probl eme de combi-naison. L'algorithme de d ecomposition est illustr e par le m elange de th eories equationnelles non disjointes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

8 Analysis of Backtracking Procedures for Random Decision Problems

Complete search algorithms are procedures capable of deciding whether or not a decision problem has a solution. Among these are the ubiquitous backtracking-like algorithms, where a decision is reached through a sequence of trials and errors. Analysis of the performances of these procedures is difficult but can be done, to some extent, using statistical physics ideas and techniques. Here, this a...

متن کامل

A SAT-based decision procedure for AL:C

The goal of this paper is to describe and thoroughly test a decision procedure, called KSAT, checking satisfiability in the terminological logic A£C. KSAT is said to be SATbased as it is defined in terms of a decision procedure for propositional satisfiability (SAT). The tests are performed comparing KSAT with, among other procedures, KRIS, a state-of-the-art tableau-based implementation of a d...

متن کامل

SMT Beyond DPLL(T): A New Approach to Theory Solvers and Theory Combination

Satisifiability modulo theories (smt) is the problem of deciding whether a given logical formula can be satisifed with respect to a combination of background theories. The past few decades have seen many significant developments in the field, including fast Boolean satisfiability solvers (sat), efficient decision procedures for a growing number of expressive theories, and frameworks for modular...

متن کامل

Lemmas on Demand for Satisfiability Solvers

We investigate the combination of propositional SAT checkers with satisfiability procedures for domain-specific theories such as linear arithmetic, arrays, lists and the combination thereof. Our procedure realizes a lazy approach to satisfiability checking of Boolean constraint formulas by iteratively refining Boolean formulas based on lemmas generated on demand by the decision procedures.

متن کامل

Decision Procedures for Bit-vectors, Arrays and Integers a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Decision procedures, also referred to as satisfiability procedures or constraint solvers, that can check satisfiability of formulas over mathematical theories such as Boolean logic, real and integer arithmetic are increasingly being used in varied areas of computer science like formal verification, program analysis, and artificial intelligence. There are two primary reasons for this trend. Firs...

متن کامل

A Reduction Approach to Decision Procedures

We present an approach for designing decision procedures based on the reduction of complex theories to simpler ones. Specifically, we define reduction functions as a tool for reducing the satisfiability problem of a complex theory to the satisfiability problem of a simpler one. Reduction functions allow us to reduce the theory of lists to the theory of constructors, the theory of arrays to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996